Friday, December 13, 2019

The maximum value of Pagel's λ (and other tips about optimizing λ using likelihood)

Yesterday, I received an email from a phytools user with the following question:

“I've run across a problem entering starting values for phylosig to estimate Pagel's \(\lambda\). Could you tell me what the function maxLambda( ) does? Could you also give me a pointer about how to enter starting values for \(\lambda\) estimation? I'm having some problems with convergence and I'd like to find out if there are any 'attractors' among a set of starting values.”

I'll try to answer both of these questions, but to do so I will use some new features of phytools, so users following along should probably first update phytools from GitHub using devtools.

library(phytools)
packageVersion("phytools")
## [1] '0.7.11'

I'm also going to use the files mammalHR.phy & mammalHR.csv.

First off, what does the (internal) function maxLambda do? This one's pretty simple. maxLambda compute largest value of \(\lambda\) for which the correlation matrix implied by the tree is not exactly singular.

What does that mean in simple terms? Well, remember that \(\lambda\) also corresponds to a tree transformation in which internal branches are multiplied by \(\lambda\), while terminal edges are adjusted to maintain a constant total height above the root for each tip. maxLambda gives us the largest possible value of \(\lambda\) such that all the terminal edges are non-zero and thus such that the implied correlation between all pairs of species are < 1. In addition, \(\lambda\) > than this value implies negative terminal edge lengths.

Let's see what this means using our mammal tree:

mammal.tree<-read.tree("mammalHR.phy")
par(mfrow=c(1,3))
plotTree(mammal.tree,fsize=0.6,ftype="i",
    lwd=1,mar=c(1.1,1.1,3.1,1.1))
mtext(expression(paste("a) ",lambda," = 1.0")),line=0,
    adj=0)
max.lambda<-phytools:::maxLambda(mammal.tree)
max.lambda
## [1] 1.014493
plotTree(phytools:::lambdaTree(mammal.tree,max.lambda),
    fsize=0.6,ftype="i",lwd=1,mar=c(1.1,1.1,3.1,1.1))
mtext(expression(paste("b) ",lambda," = maximum")),line=0,
    adj=0)
plotTree(phytools:::lambdaTree(mammal.tree,max.lambda+0.05),
    fsize=0.6,ftype="i",lwd=1,mar=c(1.1,1.1,3.1,1.1))
mtext(expression(paste("c) ",lambda," > maximum")),line=0,
    adj=0)

plot of chunk unnamed-chunk-2

For the second question, let's load some data for a phenotypic trait - mammal home range size. (I've chosen this trait because I know it has an intermediate value of \(\lambda\).)

mammal.data<-read.csv("mammalHR.csv",
    row.names=1)
homeRange<-setNames(log(mammal.data$homeRange),
    rownames(mammal.data))
homeRange
##        U_maritimus           U_arctos       U_americanus           N_narica 
##         4.75013596         4.41642806         4.03953633         0.04879016 
##            P_locor         M_mephitis            M_meles            C_lupus 
##         0.13102826         0.91629073        -0.13926207         5.31222027 
##          C_latrans           L_pictus           C_aureus U_cinereoargenteus 
##         3.80666249         5.07517382         2.20827441         0.09531018 
##            V_fulva           H_hyaena          C_crocuta          A_jubatus 
##         1.35325451         5.02912988         3.21887583         4.12874599 
##           P_pardus           P_tigris              P_leo          T_bairdii 
##         3.14415228         4.24276457         5.46383181         0.69314718 
##            C_simum         D_bicornis         E_hemionus         E_caballus 
##         1.89461685         2.74727091         3.55534806         3.11351531 
##        E_burchelli         L_guanicoe      C_dromedarius   G_camelopardalis 
##         5.10594547        -0.69314718         4.60517019         4.43793427 
##           S_caffer            B_bison             T_oryx           G_granti 
##         4.92725368         4.89034913         4.47163879         2.99573227 
##        G_thomsonii       A_cervicapra            M_kirki       O_americanus 
##         1.66770682         1.87180218        -3.14655516         3.12456515 
##       O_canadensis          H_equinus         A_melampus         C_taurinus 
##         2.66235524         4.38202663         1.33500107         4.31748811 
##          D_lunatus       A_buselaphus        A_americana       C_canadensis 
##         0.78845736         1.60943791         2.30258509         2.55955019 
##             D_dama            A_alces         R_tarandus      O_virginianus 
##         0.26236426         2.77881927         3.40119738         0.67294447 
##         O_hemionus 
##         1.04731899

We can estimate \(\lambda\) as follows:

hrangeLambda<-phylosig(mammal.tree,
    homeRange,method="lambda",
    test=TRUE)
hrangeLambda
## 
## Phylogenetic signal lambda : 0.415998 
## logL(lambda) : -100.813 
## LR(lambda=0) : 0.783684 
## P-value (based on LR test) : 0.376017

It's also now possible to plot the likelihood surface for \(\lambda\) - which by default computes the surface between 0 & 1 or the MLE of \(\lambda\) (whichever is higher).

plot(hrangeLambda)

plot of chunk unnamed-chunk-5

There is no way to specify a starting value for the optimizer in phylosig since (absent sampling error in our trait) R is doing a univariate optimization on the interval (0,maxLambda); however, we can easily compute the likelihood of any particular value of \(\lambda\) as follows:

hrangeLambda$lik(0)
## [1] -101.2049
hrangeLambda$lik(0.5)
## [1] -100.8297
hrangeLambda$lik(0.7)
## [1] -101.0179

If we do have sampling error, then optimization is multidimensional (because we have to simultaneously optimize \(\lambda\) and \(\sigma^2\)) & it is consequently imaginable that the starting value can affect convergence.

Here is a small demo of how to try different initial values for optimization using optim( ). (Note that I could have a different numerical optimization function, such as nlm( ), and it would work more or less the same.)

## imagine some standard errors for each species:
se<-homeRange
se[]<-0.5
se
##        U_maritimus           U_arctos       U_americanus           N_narica 
##                0.5                0.5                0.5                0.5 
##            P_locor         M_mephitis            M_meles            C_lupus 
##                0.5                0.5                0.5                0.5 
##          C_latrans           L_pictus           C_aureus U_cinereoargenteus 
##                0.5                0.5                0.5                0.5 
##            V_fulva           H_hyaena          C_crocuta          A_jubatus 
##                0.5                0.5                0.5                0.5 
##           P_pardus           P_tigris              P_leo          T_bairdii 
##                0.5                0.5                0.5                0.5 
##            C_simum         D_bicornis         E_hemionus         E_caballus 
##                0.5                0.5                0.5                0.5 
##        E_burchelli         L_guanicoe      C_dromedarius   G_camelopardalis 
##                0.5                0.5                0.5                0.5 
##           S_caffer            B_bison             T_oryx           G_granti 
##                0.5                0.5                0.5                0.5 
##        G_thomsonii       A_cervicapra            M_kirki       O_americanus 
##                0.5                0.5                0.5                0.5 
##       O_canadensis          H_equinus         A_melampus         C_taurinus 
##                0.5                0.5                0.5                0.5 
##          D_lunatus       A_buselaphus        A_americana       C_canadensis 
##                0.5                0.5                0.5                0.5 
##             D_dama            A_alces         R_tarandus      O_virginianus 
##                0.5                0.5                0.5                0.5 
##         O_hemionus 
##                0.5
hrangeLambda.se<-phylosig(mammal.tree,
    homeRange,se=se,method="lambda")
hrangeLambda.se
## 
## Phylogenetic signal lambda : 0.441654 
## logL(lambda) : -100.813 
## MLE(sig2) : 0.0595599
## create temporary likelihood function
LIK<-function(par) hrangeLambda.se$lik(par[1],par[2])
## optimize using starting values 0.5 & 0.1
fit1<-optim(c(0.5,0.1),LIK,method="L-BFGS-B",
    lower=c(0,0),upper=c(1,Inf),
    control=list(fnscale=-1))
fit1
## $par
## [1] 0.44160308 0.05955602
## 
## $value
## [1] -100.8131
## 
## $counts
## function gradient 
##       49       49 
## 
## $convergence
## [1] 0
## 
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
## optimize using starting values of 1.0 & 10
fit2<-optim(c(1,10),LIK,method="L-BFGS-B",
    lower=c(0,0),upper=c(1,Inf),
    control=list(fnscale=-1))
fit2
## $par
## [1] 0.4416549 0.0595599
## 
## $value
## [1] -100.8131
## 
## $counts
## function gradient 
##       33       33 
## 
## $convergence
## [1] 0
## 
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
## optimize using starting values of 0.0 & 100
fit3<-optim(c(0,100),LIK,method="L-BFGS-B",
    lower=c(0,0),upper=c(1,Inf),
    control=list(fnscale=-1))
fit3
## $par
## [1] 0.44163973 0.05955861
## 
## $value
## [1] -100.8131
## 
## $counts
## function gradient 
##       43       43 
## 
## $convergence
## [1] 0
## 
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

In all these cases, we converge on the same solution - but for a more problematic optimization this might not be the case.

No comments:

Post a Comment

Note: due to the very large amount of spam, all comments are now automatically submitted for moderation.