I've been playing testing the optimization method for tip matching in the
cophylo
method for co-phylogenetic plotting. Although a formal
proof is lacking (& not forthcoming!), I have shown via simulation that
when trees match precisely in their topology and labels, cophylo
can
successfully
find this matching - even for large trees that are completely scrambled
a priori.
This also seems to be true when some lineages are missing from one or the other tree - for instance when cospeciation is perfect, but some taxa have been lost due to extinction or missing taxa; and when cospeciation is perfect, but host lineages might possess multiple, divergent parasite races, themselves forming a monophyletic group - such as when 'speciation' for the parasite lineages occurs more rapidly than in the hosts.
Below, I demonstrate both of these cases.
First, with some missing lineages. Let's start by simulating:
library(phytools)
## simulate matching trees
t1<-t2<-rtree(n=100)
## rotate nodes randomly in one of the trees
for(i in 1:100) t2<-rotateNodes(t2,sample(1:t2$Nnode+Ntip(t2),1))
## drop lineages from each tree at random
t1<-drop.tip(t1,sample(t1$tip.label,40))
t2<-drop.tip(t2,sample(t2$tip.label,30))
## these trees are fully scrambled!
plot(cophylo(t1,t2,rotate=FALSE),fsize=0.7)
## match them by rotating nodes
obj<-cophylo(t1,t2)
## Rotating nodes to optimize matching...
## Done.
obj
## Object of class "cophylo" containing:
##
## (1) 2 (possibly rotated) phylogenetic trees in an object of class "multiPhylo".
##
## (2) A table of associations between the tips of both trees.
plot(obj,fsize=0.7)
Next, let's imagine a case in which cospeciation is perfect, but in which each host species matches with a clade of parasites (for instance). We can simulate this by first generating host & parasite trees that match, then slicing the host tree at a time point (say, when 26 lineages are extant). Next we compute all the descendants from that point in each subtree. These are our parasite clades.
## simulate trees
host<-parasite<-pbtree(n=100,scale=10)
## slice to get all subtrees
LTT<-ltt(host,plot=FALSE)
t<-LTT$times[which(LTT$ltt==26)]
subs<-treeSlice(parasite,t,trivial=TRUE)
hosts<-sapply(subs,function(x) x$tip.label[1])
host<-drop.tip(host,setdiff(host$tip.label,hosts))
host$tip.label<-LETTERS
for(i in 1:Ntip(host)){
if(i==1) assoc<-cbind(rep(host$tip.label[i],Ntip(subs[[i]])),
subs[[i]]$tip.label)
else {
assoc<-rbind(assoc,
cbind(rep(host$tip.label[i],Ntip(subs[[i]])),
subs[[i]]$tip.label))
}
}
host
##
## Phylogenetic tree with 26 tips and 25 internal nodes.
##
## Tip labels:
## A, B, C, D, E, F, ...
##
## Rooted; includes branch lengths.
parasite
##
## Phylogenetic tree with 100 tips and 99 internal nodes.
##
## Tip labels:
## t1, t4, t50, t51, t23, t91, ...
##
## Rooted; includes branch lengths.
assoc
## [,1] [,2]
## [1,] "A" "t1"
## [2,] "B" "t4"
## [3,] "C" "t50"
## [4,] "C" "t51"
## [5,] "D" "t23"
## [6,] "D" "t91"
## [7,] "D" "t92"
## [8,] "E" "t20"
## [9,] "E" "t21"
## [10,] "F" "t61"
## [11,] "F" "t62"
## [12,] "F" "t15"
## [13,] "G" "t14"
## [14,] "G" "t16"
## [15,] "G" "t38"
## [16,] "G" "t39"
## [17,] "G" "t30"
## [18,] "H" "t2"
## [19,] "I" "t36"
## [20,] "I" "t37"
## [21,] "I" "t33"
## [22,] "I" "t34"
## [23,] "J" "t8"
## [24,] "J" "t22"
## [25,] "J" "t73"
## [26,] "J" "t74"
## [27,] "J" "t48"
## [28,] "K" "t5"
## [29,] "L" "t6"
## [30,] "M" "t55"
## [31,] "M" "t56"
## [32,] "N" "t99"
## [33,] "N" "t100"
## [34,] "N" "t64"
## [35,] "N" "t52"
## [36,] "N" "t17"
## [37,] "N" "t40"
## [38,] "N" "t41"
## [39,] "O" "t19"
## [40,] "O" "t68"
## [41,] "O" "t69"
## [42,] "O" "t18"
## [43,] "P" "t25"
## [44,] "P" "t43"
## [45,] "P" "t44"
## [46,] "P" "t70"
## [47,] "P" "t71"
## [48,] "P" "t63"
## [49,] "P" "t11"
## [50,] "P" "t10"
## [51,] "P" "t9"
## [52,] "Q" "t13"
## [53,] "Q" "t46"
## [54,] "Q" "t47"
## [55,] "Q" "t42"
## [56,] "R" "t28"
## [57,] "R" "t29"
## [58,] "S" "t49"
## [59,] "S" "t89"
## [60,] "S" "t90"
## [61,] "T" "t26"
## [62,] "T" "t27"
## [63,] "U" "t45"
## [64,] "U" "t79"
## [65,] "U" "t80"
## [66,] "U" "t97"
## [67,] "U" "t98"
## [68,] "U" "t12"
## [69,] "V" "t7"
## [70,] "W" "t57"
## [71,] "W" "t58"
## [72,] "W" "t59"
## [73,] "W" "t81"
## [74,] "W" "t82"
## [75,] "W" "t60"
## [76,] "W" "t32"
## [77,] "X" "t24"
## [78,] "X" "t75"
## [79,] "X" "t76"
## [80,] "X" "t77"
## [81,] "X" "t78"
## [82,] "X" "t65"
## [83,] "X" "t66"
## [84,] "X" "t67"
## [85,] "X" "t95"
## [86,] "X" "t96"
## [87,] "Y" "t53"
## [88,] "Y" "t54"
## [89,] "Y" "t35"
## [90,] "Y" "t93"
## [91,] "Y" "t94"
## [92,] "Y" "t85"
## [93,] "Y" "t86"
## [94,] "Y" "t72"
## [95,] "Y" "t83"
## [96,] "Y" "t84"
## [97,] "Y" "t87"
## [98,] "Y" "t88"
## [99,] "Y" "t31"
## [100,] "Z" "t3"
## scramble order of parasites
for(i in 1:100) parasite<-rotateNodes(parasite,sample(1:parasite$Nnode+
Ntip(parasite),1))
## they are fully scrambled
plot(cophylo(host,parasite,assoc=assoc,rotate=FALSE),
fsize=c(1,0.5))
## rotate to optimize matching
obj<-cophylo(host,parasite,assoc=assoc)
## Rotating nodes to optimize matching...
## Done.
plot(obj,fsize=c(1,0.5),link.type="curved")
Pretty neat, right?
Very useful indeed. Is there a way to display the association lines in a different color? I tried plot(obj, link.type="curved", col="red"), but it didn't work.
ReplyDeleteI believe the argument is link.col. Sorry it's not better documented.
Delete